Improving Parallel Execution Time of Sorting on
Heterogeneous Clusters

Christophe Cérin
Université de Picardie Jules Verne

Michel Koskas
Université de Picardie Jules Verne

LaRIA, Bat Curi, 5 rue du moulin neuf LaMFA/CNRS UMR 6140, 33 rue St Leu

F-80039 Amiens cedex 1- France
cerin@laria.u-picardie.fr

F-80039 Amiens cedex 1- France
koskas@laria.u-picardie.fr

Hazem Fkaier, Mohamed Jemni
Ecole Supérieure des Sciences et Techniques de Tunis,
Unité de recherche UTIC
5, avenue Taha Hussei, B.P. 56 Bab Menara, Tunis - Tunisie
hazem.fkaier@fst.rnu.tn, mohamed. jemni@fst.rnu.tn

Abstract

The aim of the paper is to introduce techniques
in order to optimize the parallel erecution time
of sorting on heterogeneous platforms (processors
speeds are related by a constant factor). We de-
velop a constant time technique for mastering pro-
cessor load balancing and execution time in an het-
erogeneous environment. We develop an analytical
model for the parallel execution time, sustained by
preliminary experimental results in the case of a
2-processors systems. The computation of the so-
lution is independent of the problem size. Conse-
quently, there is no overhead regarding the sort-
ing problem. Keywords: in-core parallel sorting al-
gorithms, heterogeneous computing, complexity of
parallel algorithms.

1. Introduction

The advent of parallel processing, in particular in
the context of cluster computing is of particular
interest with the available technology. A special
class of non homogeneous clusters is under concern
in the paper. We mean clusters whose global per-
formances are correlated by a multiplicative fac-
tor. We depict an heterogeneous cluster by the
mean of a vector (the so call performance vector)
set by the relative speeds of each processor.

This class of machines is of particular interest for
two kinds of customers: first, for those who can-
not replace instantaneously whole the components
of its cluster with a new processor or disk gener-
ation but shall compose with old and new proces-
sors or disks and second for people sharing cpu-
time because the cluster is not a dedicated one.

In this paper we develop techniques in order of
mastering the execution time and the work of each
node. The paper organization is the following. In
Section 2 we summarize our previous results about
sorting on heterogeneous platforms. In Section 3
we introduce the new problems. Section 4 exposes
an analytical model for mastering both the paral-
lel execution time and the work on each nodes of
a 2 processors platform. Section 5 generalizes the
techniques and results exposed previously. Section
6 is devoted to preliminary experimental results
and Section 7 concludes the paper.

2. Our previous results

Our previous papers [2, 3, 4, 5, 1] deal with inter-
nal and external sorting algorithms on heteroge-
neous clusters and they are innovative since all the
papers about parallel sorting algorithms (to our
knowledge) always consider the special case of ho-
mogeneous computing platforms. For instance, the
sorting algorithm implemented for the NAS par-

allel benchmark considers the homogeneous case
only.

In [2, 3, 4, 5, 1] we focused on the ways to en-
sure good load balancing properties: if a proces-
sor is initially loaded with n integers and n is re-
lated to its performance, then the processor must
never deal with more than k.n data with the re-
quirement that k& should be as low as possible.

The main difference with our previous works is
that we are now interested by the best way to
guaranty both load balancing properties and exe-
cution time. We will explain that load balancing
does not necessary implies the best execution time
when we deal with heterogeneous clusters.

We focus on a specific technique, namely a meta
schema for partitioning elements located on differ-
ent nodes, is revisited in this paper to match an
upper bound on the execution time.

2.1. Generic approaches

In our research, we specifically focus on pivot based
technique and one step communication algorithms
because they match the requirement of limited
number of long messages of message passing pro-
gramming languages in order to get performances.
Thus we need a limited number of communica-
tion steps in order to avoid 'to be slowdown’ by
the bandwidth of the network. Let us explain the
spirit of such algorithm [3] in the case of homoge-
neous/heterogeneous clusters. The key idea is to
select pivot in the input then to partition the in-
put according to the pivots then to exchange data
then to sort.

2.2. Parallel Sorting by Over-

partitioning (PSOP)

2.2.1. The homogeneous case Li and Sevcik
algorithm [7] to balance the work, can potentially
handle nodes that do not make uniform progress.
The key ideas of Li and Sevcik [7] for the homoge-
neous case is to do the selection of pivots that par-
tition the input into equal size chunks by a ’suf-
ficient number’ of random pivots that also have
to partition the input into chunks of approxima-
tively equal sizes.

The key technical discussion is about the number
of pivots. The trick used in [7] is related to the

following result:

Theorem 1 (See [7]) (p.k — 1) pivots partition
the input into p.k chunks such that the size of the
greatest chunk is lower or equal to n/p with proba-

bility at least
1 p.k
1-2p(1——
P < 2p)

Algorithm 1 (Code as it is found in [7])

Step 1: initially, processori hasl;, a portion of size
n/p of the unsorted listl;

Step 2: (selecting pivots) a sample of p.k.s
candidates are randomly picked from the list
where s is the oversampling ratio and k the
over-partitioning ratio. Fach processor picks
s.k candidates and passe them to a desig-
nated processor. These candidates are sorted
and then p.k— 1 pivots are selected by taking (in
a ‘regular way’) s, 2.8t ... (pk — 1)t can-
didates from the sample. The selected piv-
otsdi,da, - ,dpr—1 are made available to all
the processors;

Step 3: (partitioning) since the pivots have been
sorted, each processor performs binary parti-
tioning on its local portion. Processort decom-
poses l; according to the pivots. It produces
pk sublists per processor denoted l;; where i, j
stands for two consecutive pivots (except for the
initial an final case). A sublist S; is the union
of l;; with i ranging over all processors. There
is pk sublists.

Step 4: (build task queue and sort sublists)
Let T(S;) denotes the task of sorting S;. The
size of each sublist can be computed:

p
1551 =" | Ly |
=1

Also the starting position of sublist S; in the fi-
nal sorted array can be calculated:

Jj—1
oj =1+ |S|
h=1

A task queue is built with the tasks ordered from
the largest sublists size to the smallest. Each
processor repeatedly takes one task T'(S;) at a
time from the queue. It processes the task by

(a) copying the p parts of the sublist into the fi-
nal array at position o; to o;+ | S; | —1, and
(b) applying a sequential sort to the elements in
that range. The process continues until the task
queue is empty.

2.2.2. The heterogeneous case We have in-
troduced in (3] and adaptation of the previous al-
gorithm for an heterogeneous platform. The key
for load balancing in this algorithm is the tasks
scheduling step (step 4). The challenge is to sched-
ule tasks with different sizes on processors having
different speeds. The number of pivots required to
ensure a good load balancing factor is computed
according to theorem 1 but in considering that we
have virtually a number of processor equal to the
sum of the performance vector instead of p pro-
Cessors.

Concerning the scheduling step, we propose now
the following strategy for implementing step 4:

e As with the original version, we compute the
sizes of the tasks and then we sort them ac-
cording to their sizes.

e We proceed task by task, in the decreasing or-
der.

e We estimate the execution time of the
current task on each processor as fol-
lows. Let T'S; be the size of the ith task,
then the execution time on the jth pro-
cessor will be: Exec_time(current task)
= (T'S;log T'S;)/perf;.

We compute, for each processor, the exe-
cution time of the tasks already scheduled on
it plus the execution time of the current task:
Let S; be the sum of the execution times of
the tasks already scheduled to the jth proces-
sor: S; = Sj+ Exec_time(current task)

e We compare the new values of S; relative to
the different processors, and we detain the
lowest value. The task will be definitely sched-
uled on to the processor having the lowest
value of S; and the others will ignore this
task. And we pass to the next task.

We made an estimation of the execution time
based on the time complexity of the sorting al-
gorithm. But, and this point will be the main dis-
cussion point in the next section, the partition-
ing step considers portions of size n/per f;, where
per f; is the speed of processor 1.

3. Discussion about the parallel ex-
ecution time

We have seen that in the case of heterogeneous
platforms, data are initially distributed propor-
tionally to the speed of processors. This is the pre-
condition of the problem.

We now examine the impact of the initial distri-
bution or, more precisely the impact of the redis-
tribution of data, on the parallel execution time.
We determine the impact in terms of the way of
restructuring the code of the meta partitioning
scheme that we have introduced above. Then we
justify the approach rather than processing to a
redistribution of data when we start a new execu-
tion.

In previous section, when we had N data to sort
on p processors depicted by their respective speeds

k1,- -+, kp, we had needed to distribute to proces-
sor p; an amount n; of data such that:

nl/klzng/kgz :np/kp (1)

and ny +ng+ ... +np, =N (2)

The solution is:

ny = N*kl/(k1+k2—|——|—k’p)
Nng = N*kg/(k1+k2+...+kp)
ny = Nxky/(k1+ka+...+kp)

Now, since the sequential sorts are executed on n;
data at n; logn, time cost (approximatively since
there is a constant in front of this term), there is
no reason that the nodes terminate at the same
time since nq/kilogni # na/kalogne # --- #
ny/kplogn, in this case.

The main idea that we develop now is to distribute
to each processor an amount of data proportional
to n; log n; in order to be processed by the sequen-
tial sorts. The problem is now to compute the new
data sizes ny,- - -, n, such that:

n/1+n/2—|—"-—|—n;:]\[
and (nﬁ/kl)lognll = (TL/Q/]{JQ) lognlz ==
(ni,/kp) log

First of all, we show that this new distribu-
tion converges to the initial distribution when N
tend to infinity. The fundamental reason is that

n
li =1 .
A g — A ()

Let us simply consider the case of 2 processors at
speed ki, ks to get the intuition that the distri-
butions converge. The first (when we consider the
initial method) distribution is:

ni = Nxkl/(kl+k2)
ne = Nxk2/(kl+k2)

and consequently (k1/k2) = (n1/nz2). The new
distribution is:
nf+nh = N
(n1/k1) logn} (na/k2)logny

and consequently

!

ki/ka nilogny ny logn}

— / Y
= (nhlogny nh

log n,

If N increases, then ny; and ng will also increase.
And more they increase, more the ratio of log
terms tends to 1. Consequently, the ratio n}/nj
tends to ki/ke which is equal to ni/ng. Conse-
quently, more N is high, more the execution times
of sorts will be close each together.

Second, let us consider some numerical examples
to see if some practical cases could be solved ef-
ficiently by our new method despite the fact that
asymptotically speaking it is equivalent to the pre-
vious one.

Let P;, P> two processors characterized by their
speeds k1 = 1,ky = 6 respectively and let N =
321. The first method gives n; = 46 and ng =
275 whereas the second method gives (approxi-
matively):

n} = 64, (641og64)/1 = 64«6 = 384

nf = 257, (25710g257) /6 = 222 = 385 5

The ratio ki/ke = 0,1666 whereas the ra-
tio nj/ny, = 0,249. The unbalance is
1 — 0.1666/0.249 = 37%...which is impor-
tant. Let us consider the case of Giga bytes
of data and let N = 419G. The first distribu-
tion gives n1; = 60G and no = 359G. The second
distributions gives:

n| = 64G, (64Glog64G)/1 = 64G x 36
= 2.473.901.162.496
n/2 _ 355G, 355G106g355G — 355G %39

6
= 2.477.659.258.880

The nf /n} ratio is 0180, thus the unbalance factor
is now 8%.

We are now convinced that when N tends to infin-
ity, the n} /n}, ratio tends to 1/6, that is to say to
n1/na. Moreover, we think that we have many sit-
uations that could benefit from our optimization.

4. Computation of the optimal sizes
(2 processor case)

We are going to compute the n) sizes by approxi-
mating the solution through a Taylor development
for the log function. Note that with our initial
ki
CETHEY)
Let us find n/ under the form n, =
k;

N i .

ki+...+knp ta log N

The idea is to produce a new term of form alv%
complementing the previous distribution.

method we have n;, = N

In fact, we will now compute the a; terms uniquely
for the case of two processors. Moreover, it is clear
that the sum of a; terms is null since the sum of
n; terms is invariant and is equal to .

Theorem 2 The approximated sizes to distribute
to each processor of a two processors cluster of speed
ki1,ks € IN and for a problem size of n data are:

nL=n Fa + i lo <E> 7k1k2
L M ke logn 8 \F1) (k1 + ka)2
and

ng =n k + i lo <ﬁ> 7k1k2
2T e ks logn 2 \ka) Ui + k)2

Proof: see appendix.

5. General case

In this section we compute the optimal sizes in the
general case of any number of processors. We reuse
the previous assumptions and techniques. Let us
assume that K is the sum of the relative speeds k;
of a p processor system. The problem is depicted
by the following 3 equations:

k;
n; = _ZN+ €4,

. a<i<p @

Zei =0 (4)

n; 10g n; n; 10g Uz ..
x P 1siisy 6

Note again that Equation 4 says that the sum of
the correcting factors should be null because the
sum of the n; is invariant and is equal to N. We
develop Equation 5 and we reuse the same facts
during the approximation that we have done in
the previous section. In another words, we pro-
ceed again by equivalence.

Theorem 3 The approximated sizes to distribute
to each processor of a cluster of processor speed k; €
IN and for a problem size of n data are:

ki no | k& k
i=n—+— |5 kjlog |-~
n nK+1ogn ng; Jog(ki)

Proof: see appendix.

6. Experimental results (prelimi-

nary)

In order to get trends from our new partitioning
schema, we have modified one of our code [6] and
we have experimented on a 2 processor system (2
Alpha 21164 EV 56 processors' at 533Mhz inter-
connected with Fast Ethernet under MPI). The
code is an implementation of Parallel Sample Sort
(PSS) for heterogeneous platforms.

We set arbitrary the performance vector to {1,3}
(processor 1 is 3 times faster than processor 0) and
we measure the sizes of data on each node during
the last step (the sequential sorting step) for our
new approach and for the previous one. We exe-
cute our codes for an input size of 1048576 inte-
gers with an oversampling ratio of 6 (see [6] for an
explanation of the role of this coefficient).

According to our new schema, we measure a devi-
ation of +6.7% and —2.6% comparing to the opti-
mal sizes (given as 262144 4 15580 = 277725 inte-
gers and 770851 integers) and for processor 0 and
1 reciprocally. These results corresponds to means.

According to our previous schema, we measure a
deviation of —13.4% and —1.5% comparing to the
optimal sizes (given as 277725 integers and 770851

1 Thesystem is homogeneous but we measure the data size
on each node and not the execution time

integers) and for processor 0 and 1 reciprocally.
These results corresponds to means.

Thus, we find that our new schema does not im-
prove significantly the load balance factor for PSS.
It is partly expected because we know that PSS
has, by nature, important deviation regarding the
load balancing factor. Here the load balancing fac-
tor has a deviation of about 14% (in mean); we
have measured 15% of deviation on a 4 processors
system [6] and according to a performance vec-
tor set to {8,5,3,1}.

In fact, such deviation is due to the number of se-
lected pivots and the way they are selected. We
conclude that our new schema can not compensate
totally the deviation of PSS. However, we notice
that if we consider individually the results on each
node, our schema provides less dispersion than for
our previous schema. It is promising.

We are currently experimenting with Parallel Sort
by Over-partitioning which has good properties in
terms of load balancing and execution time [6]. We
are now convinced that improvements in perfor-
mance are possible for such technique. In fact, this
project is part of the Grid-Explorer project? aim-
ing of building a platform of 1000 CPU in order to
emulate grid systems. The platform will be avail-
able on November 2004. The heterogeneity of CPU
could be obtained by the use of FreqCPU Linux
module®. Cpufrefd is a small daemon to adjust
cpu speed and voltage for kernels using any of the
cpufreq drivers available. The CpuFreq patch has
been included in the 2.6 kernel tree. This module
will allows us to configure an heterogeneous plat-
form from an homogeneous one. So we will check
how much time we would obtain in our compar-
isons if we use the previous and the new technique
in a real system.

7. Conclusion

In this paper we have demonstrated how to op-
timize the data distribution in the case of sort-
ing on heterogeneous platforms. Previous works
on this subject have concentrated their efforts on
load balancing but not on execution time criteria.
This paper makes the bridge between the two re-
quired properties. The new technique is a constant

2 See:http://www.lri.fr/ fci/GdX
3 See:http://sourceforge.net/projects/cpufreqd

time one. Consequently it introduces no overhead
regarding the sorting problem.

We would like also to mention that the tech-
nique used in this paper forms a meta-partitioning
schema, generalizing our previous works, and it
can be reused in the case where the sequential
brick of the parallel algorithm has a time com-
plexity different than nlogn. Imagine for instance
that we have a problem that can be divided into
independent portions and that we have to use a se-
quential algorithm of time complexity /7.

We would like to execute the parallel algorithm
on an heterogeneous cluster of p processors. The
problem here is to find the n;, (1 < i < p) such
that n = ny + -+ +np, and /ni/k1 = -+ =
Vp /kp. We are guessing that Taylor development
of vn+1,ie. (1+1/2xn—1/8+n?+1/16%n>—
5/128 x n* 4 7/256 x n® + O(n®)) could be used in
this case.

So, we are planning to solve the problem of com-
putation of the n; values for a large scale of usual
time complexity. In this way, one can imagine that
our meta-partitioning schema will organize itself
according to a sequential portion of code and for
the purpose of distributing data in an efficient way.

In the future, we will also consider the problem
of finding a solution for the partitioning problem
when the complexity of the sequential algorithm
cannot be expressed with rational fractions. Dy-
namic programming could certainly offer solutions
with an overhead that should be maintain as low
as possible. We think that the main interest in us-
ing dynamic programming for our problem resides
in the fact that we may assume that the cost func-
tion, here nlogn, is not necessary decomposable
under rational fractions.

References

[1] C. Cérin. An out-of-core sorting algorithm for clus-
ters with processors at different speed. In 16th Inter-
national Parallel and Distributed Processing Sympo-
stum (IPDPS), Ft Lauderdale, Florida, USA, page
Available on CDROM from IEEE Computer Soci-
ety, 2002.

[2] C. Cérin and J.-L. Gaudiot. Evaluation of two bsp
libraries through parallel sorting on clusters. In
Proceedings of WCBC’00 (The Second International
Workshop on Cluster-Based Computing) in con-
Juction with ICS’00 (International Conference on

Supercomputing, sponsored by ACM/SIGARCH),
pages pp 21-26, Santa Fe, New Mexico, 6 May 2000.

[3] C. Cérin and J.-L. Gaudiot. An over-partitioning
scheme for parallel sorting on clusters running at dif-
ferent speeds. In Cluster 2000. IEEFE International
Conference on Cluster Computing. Technische Uni-
versitdt Chemnitz, Saxony, Germany. (Poster), 28
Nov. - 2 Dec. 2000.

[4] C. Cérin and J.-L. Gaudiot. Parallel sorting
algorithms with sampling techniques on clusters
with processors running at different speeds. In
HiPC’2000. Tth International Conference on High
Performance Computing. Bangalore, India, Lecture
Notes in Computer Science. Springer-Verlag, 17-20
Dec. 2000.

[5] C. Cérin and J.-L. Gaudiot. On a scheme for paral-
lel sorting on heterogeneous clusters. FGCS (Future
Generation Computer Systems, 18(issue 4), 2002.
The special issue is preliminary scheduled for publi-
cation in future vol.

[6] C. Cérin, M. Jemni, and H. Fkaier. A synthesis of
parallel out-of-core sorting programs on heteroge-
neous clusters. In 3st International Symposium on
Cluster Computing and the Grid, Tokyo, May 2003.

[7] H.Liand K. C. Sevcik. Parallel sorting by overpar-
titioning. In Proceedings of the 6th Annual Sym-
posium on Parallel Algorithms and Architectures,
pages 46-56, New York, NY, USA, June 1994. ACM
Press.

Appendix

Proof of Theorem 2: let

® (V1 = kl/(kl + kz)

o ao =kof(ki+ k2)

o a=kika/(k1+ ko)

e a; and as be the two unknown terms (and
a]; = —ag)

Let us recall the following Taylor developments:

e Taylor(log(1—z)) = —2—1/2%22—1/3%23—
1/4*a* —1/5%2° —1/6 % 2° + O(z")

e Taylor(log(l+x)) =2 —1/2%2% +1/3 23 —
1/4*a* +1/5%2® —1/6* 2% + O(27)

We proceed by equivalence starting from the fact
expressing that the execution times are identical:

(Tll 10g nl)/kl = (’IZQ 10g ng)/k’g =
((crn + a1) log(ain + a1))/k1 — ((cen + az) log(aan + az))/ke = 0 <
k2(a1n + aq) loglain(l + a1 /(can)] — k1 (aen — a1) loglaan(l — a1 /(aen)] = 0 <
kaainlog(ain) + keaq log(ain) + keaynlog(l + a1/(an))+
koaq log(1 + aq/ain)—
(this term is close to 0 when we take the Taylor development, so we neglish it)
k1aganlog(agn) + kiaq log(agn) — kiasnlog(l — a1 /(aan)) + kraq log(1 — a1/ (asn))
(this term is close to 0 when we take the Taylor development, so we neglish it) <
anlog(ayn/(azn)) + alog((1 + a1 /(e1n)/(1 — a1 /(agn)))+
ksaq log(ain) + k1aq log(agn) = 0 <
(We use Taylor development here for logs)
anlog(ki/ke) + an(ai/(ain) + a1/(aen)) + kaaq log(aan) + kiaq log(azn) = 0 <
anlog(ky /k2) + anay /n((ky + k2)?/(k1.k2)) + a1 (ky log(ayn) + ky log(agn)) <=
an 10g(k1/k'2) + al[(kl + k‘Q) + ko log(ozln) + k1 1og(0z2n)] =0«

k1 kg/(k’l + kg)’fl log(kg/kl)
(k1 + k2) + ko log(ain) + k1 log(aan)

(6)

ap =

To observe the result, we have now to show that the denominator is close to (ki + k2) log(n) which is not
very difficult to obtain. In this case, we obtain the aforementioned result:

klkg n
= —F—log(ka/k
ax (k1 + k)2 og(kz/ 1)1ogn

A similar computation leads to the value of ny. To summarize, we propose to use the following values for
ni,na:

n kl n n 10g<k‘2)(kle

(7)

- nkl + ko logn k) (k1 + k)2
and
ng =mn k2 +L10g<ﬁ) &
k1 + ko logn ko (kl + k2)2

Proof of Theorem 3: we proceed again by equivalence from the previous equations.

k; (FN—F ei> log (FN-i-ei) =k; (FJN'FE]') log (EJN—F ej) =
kik; ks k;N ki k;
LN |:10g <EN + 61') — log <j7 + €j>:| + kje;log <EN + 61') — k;ejlog (F]N + €j) =0

kik; k; K e K k; k;
I N |1 i v €1 2N — kel N =
[Og<kj>+ki]\/ RN + kje og(K) ki€j og(K) 0 <—

kik; ki k; k; B
e Nlog (E) + € [kj + kj log (EN)} — € {kl + k; log (EN>} =0+

5 Nlog (1) + i (ky + kg log (3 N)

ki (14108 (52))

€5 =

Now, we have also that:

p
€1+Z€j =0
j=2

Thus,

i) i
SR N BR tog (1) .
=2 F1 (1 + log %N)) Kkv =51 4 log (%N
- .
1+log (B2N) & k N ’fglog(—
o Og(K)Z Jk +_Z k] =0 <
Fa =2 1+1log (?f) K51+ 1og (?JN)
k
5 2 kN b kylog 0
€1 =
=1+ log (';(N) K (1+1og(EN)) = 1+ log (%N)

Now we use the facts that 1 +log(ki/KN) ~ log N, 1+ log(k;/KN) ~ log N and
P
k.
Z—jk ~ K/log N
j=1 1+10g (?JN)

to derive that
N &
k1 eA
‘= K2logNZ Og(k)
Hence the formula:
N |k <& k;
= | —— kil -
‘T logN K?j; j Og<ki)

N k
Verification: for the 2 processors case we get the previous result ¢; = Tox NV log (k_2)
0og 1

expected.

k1ks

(k1 + k2)?

